
An Introduction to Quantum Cellular Automata

Joshua Horowitz

December 17, 2008

1 Introduction

Computer scientists have invented a plethora of fascinating machines to study. They are called
computational models, and they come in many strange and varied shapes: Turing machines,
register machines, circuits, finite automata, and many more.1 When people began wondering what
the computational potential of quantum physics was, they needed quantum-computational models,
and the most straightforward way to get these was to take one of the old, classical computational
models and modify it with quantum weirdness. As could be expected, this game of “quantization”
(putting ‘Q’s in front of things) has become a commonplace part of quantum computer science.

Some quantized models have attained more prominence than others. For instance, the quantum
circuit model has become standard for discussing issues of computational complexity, and the
importance of Turing machines as a basis for classical computation has carried over to an interest
in quantum Turing machines. But alternatives certainly exist, and each provides a new, interesting
perspective on how computation works in a quantum universe.

In this report, I will discuss the quantum cellular automaton (QCA), a model which is exciting
not only for its simple and elegant structure, but also for its “physical” flavor. Quantum cellular
automata were physically inspired, and can thus shed light on the behavior of physical systems, and
conversely, they carry the hope of providing a physical implementation of quantum computation.

Furthermore, just as a large class of classical computational models have convergent capabilities,
making the concepts of “computable” and “efficient” much more universal than would be expected,
quantum cellular automata appear to fit in with the rest of the quantum computational models:
they are quantum-computationally universal. As such, quantum cellular automata encompass the
whole universe of quantum computation, and one can be sure that studying them will shed light
on the entirety of the field.

2 Classical Cellular Automata

To start with, what is a classical (non-quantum) cellular automaton? It is a very simple computer
which stores data on a tape2 and updates every cell on the tape simultaneously through some local

1Wikipedia lists over 90 articles in its category “Computational models” [6].
2It is certainly possible to define cellular automata on higher-dimensional grids (or even more general topologies),

but the one-dimensional case is powerful and rich enough for this short introduction.

1



update rule. For example, we can make a cellular automaton with two cell states, and • ,
and the update rule:

• • • −→ • • −→ •
• • −→ • • −→ •
• • −→ • • −→ •
• −→ −→

What this means is that, at every time step, a cell “looks” at its left and right neighbors and
decides, based on its own state and its neighbors’ states, what its state in the next time step will
be. We can “run” this rule, starting with an almost-blank tape:

Time

��

•
• •

• • •
• • •

• • • • •

Starting with the single marked cell, a pattern spreads to the left. If we continued running the
rule, a complicated pattern would emerge on our space-time diagram, full of triangles in strange
formations:3

One way of thinking about a cellular automaton is that it is a “powerfully stupid” Turing
machine; stupid, because there is no centralized head keeping track of a state in a program, but
powerful, because the entire tape performs computational work at once. However you think these
two forces balance one another, it is still surprising to learn that the above two-state CA (known
as Rule 110) is in fact computationally universal. By programming it with some easily-computable
input, it will perform any computation that a Turing machine can. Thus, cellular automata fit
into the grand class of computational models which, though they appear different on the surface,
have the exact same computational power.

It would be silly, however, to just forget about cellular automata as a result of this deep
equivalence, for cellular automata have unique characteristics which distinguish them from other
models and give us good reason to study them. As I mentioned before, one of these is their

3Image from [7].

2



distinctly “physical” flavor. The update rule is local, and homogenous across the tape, much
like a law of physics should be local and homogenous across space. For this reason, there has
been much interest in modeling physical systems with cellular automata. Conversely, if one could
find a physical mechanism which effectively performed the update rule of a cellular automata,
one could use this mechanism to implement the automaton in the real world, and perform actual
computations.

This discussion becomes all the more exciting when one realizes that the physical laws of our
universe are in fact quantum in nature. One is confronted with the question: How would a quantum
cellular automaton work?

3 Quantum Cellular Automata

People often trace the history of quantum computing to a famous 1982 paper by Feynman entitled
“Simulating physics with computers” [2]. It is interesting to note that, in this inaugural paper,
Feynman mentioned quantum cellular automata as a possible way to make a universal quantum
computer. The discussion was casual, however, and it took over ten years for the concept to be
formalized.

One of the first people to write down a real mathematical definition of a QCA was John
Watrous, in a 1995 paper [5]. Since then, several alternative definitions have been given (to fix
various unpleasant attributes of the model) but Watrous’s QCA is still the most straightforward,
and an excellent way to introduce the concept.

The basic idea behind Watrous’s definition was to replace classical, deterministic transitions
with quantum amplitudes. That is, instead of the rule • • −→ • , we might have • • −→√

1
3

+
√

2
3
• . We can formalize this, of course: Before, the (classical) update rule could be

thought of as a map:
δ : Q︸︷︷︸

left

× Q︸︷︷︸
old

× Q︸︷︷︸
right

−→ Q︸︷︷︸
new

.

(Here, Q is the set of cell states.) Now, the (quantum) update rule assigns amplitudes to every
possible transition from old (and neighbors) to new:

δ : Q︸︷︷︸
left

× Q︸︷︷︸
old

× Q︸︷︷︸
right

× Q︸︷︷︸
new

−→ C︸︷︷︸
amplitude

.

Based on these local transition amplitudes, we can compute global transition amplitudes from any
given tape configuration to any other tape configuration:

∆(a, b) =
∏

i

δ(ai−1, ai, ai+1, bi).

Using these amplitudes, we have a single-time-step-evolution operator on the Hilbert space with
tape configurations as basis elements:

T |a〉 =
∑

b

∆(a, b) |b〉 .

3



This straightforward process has given us the global time-evolution operator (on the Hilbert-
space extension of the set of classical tape configurations) from the local transition amplitudes.
But we’ve moved very quickly, and missed an important problem. For this model to make any
sense at all, the global time-evolution operator T must be unitary. Every quantum system must
evolve according to some unitary transformation, and besides, being unitary is one of the best
ways to guarantee that normalized states will go to normalized states (so we can interpret squared
amplitudes as probabilities which sum to 1).4 But in general, there is no reason for us to expect
that T will be unitary. Trivially, we could have set δ to always be 0, giving T = 0. One might
think that a simple normalization requirement on δ (like

∑
q δ(q1, q2, q3, q)

2 = 1 ∀q1, q2, q3) would
be enough to guarantee that T be unitary, but it is regrettably not that simple.

Watrous has a two-part solution to this problem. The first part is sort of a cop-out. It is
to call QCAs which have δs giving rise to unitary T s well-formed QCAs, and leave the question
of determining whether a given QCA is well-formed or not to whoever wants to use that QCA.
Fortunately, a few years after Watrous’s paper, a polynomial-time algorithm was discovered which
checks whether a QCA is well-formed or not (in our situation, it would run in O(n2) time) [1].
Still, the question of which QCAs are well-formed is a complex and subtle one.

The other part of Watrous’s solution was to find a sufficiently large and interesting class of
QCAs for which checking well-formedness is easier than in general. In particular, Watrous studied
a creature called a partitioned quantum cellular automaton. As evidence that these do indeed form
a sufficiently large and interesting class, he proved that they are, in fact, universal for quantum
computation. Let us see how this works.

4 Partitioned QCAs and Universality

In a partitioned QCA, we think of the state of each cell as being made up of the states of three
(somewhat imaginary) subcells. Here’s a single cell with the state (α, β, γ):

∈ Q
α β γ

∈ QL ∈ QM ∈ QR

Q = QL ×QM ×QR

This alone means nothing; we’re just writing our cells’ states as tuples. The real thing which
distinguishes a PQCA is that we restrict how its update rule can work. In particular, we demand
that transition amplitudes depend only on

• the right substate of the left neighbor,

• the middle substate of the self, and

• the left substate of the right neighbor.

To anthropomorphize, a cell can only “see” the right side of its left neighbor, the middle of itself,
and the left side of its right neighbor. Perhaps the inability of a cell to see its own facades fits in
nicely with the social analogy.

4There is a point of possible confusion here: Since we have an infinite-dimensional Hilbert space, there are
operators which preserve the norm without being unitary.

4



We can think of the action of a PQCA’s update rule as a permutation of subcells, followed by
some sort of cell-wise transformation V . This is illustrated in the following diagram:5

V V V

Now it is easy to see why a PQCA’s well-formedness is simple to determine. What we have here
is a quantum circuit. Every step of the PQCA’s operation consists of a permutation of registers,
followed by disjointly-acting three-register operations. If the three-register operation is unitary,
the whole time-step operation will be unitary, and visa versa. Thus, checking well-formedness of
a PQCA just comes down to checking whether the matrix determining the transition amplitudes
is unitary.6

So PQCAs are a particularly nice and easy-to-analyze subclass of QCAs. The question is, can
they do anything? As I mentioned before, the answer is that they can in fact to anything. To
be exact, Watrous proved that, given any quantum Turing machine M , you can easily construct
a PQCA which simulates M and gives the same answers to all inputs, taking at most a constant
amount more steps than M to do so.

The proof is surprisingly straightforward. The structure of the Turing-machine simulation is
reflected in the structure of the cell partitioning:

• Left subcells store left-moving heads (with their head-states).

• Middle subcells store the Turing machine’s tape markings.

• Right subcells store right-moving heads (with their head-states).

Then the restriction on the PQCA’s update rule gives us exactly as much freedom as we need to
update the tape corresponding to one step of the QTM’s operation (that is, to move the head,
possibly change the head-state, and possibly change the tape marking on the cell it moves into).
The amplitudes for various QTM transitions directly become the amplitudes for various PQCA
transitions.

So PQCAs are at least as powerful as QTMs. Are they any more powerful? Watrous proved in
his paper that the answer is no. Just as PQCAs can simulate QTMs, QTMs can simulate PQCAs.

5Diagram from [3].
6Thinking about QCAs in terms of quantum circuits helps to explain how it is that QCAs can be poorly-formed:

Drawing out the circuit diagram for a general QCA requires that you use fan-out (branching wires), which is not
allowed by the no-cloning theorem. A QCA will only be well-formed only if these fan-outs turn out to be unneeded,
which is not necessarily easy to determine.

5



Furthermore, they can do so with at worst linear slowdown, so PQCAs and QTMs are equivalent
in terms of both computation and complexity.

However, this equivalence was proven only between QTMs and the restricted class of partitioned
QCAs. The question of whether non-partitioned QCAs are any more powerful than QTMs is
undetermined.

5 Further Directions

As I mentioned, Watrous’s model suffers from some genuine flaws. The lack of a general guarantee
of well-formedness makes them difficult to work with. Furthermore, they lack many convenient
properties of composability and invertibility. For these and other reasons, other models have
been presented in the literature. They generally invoke more sophisticated machinery, such as
homomorphisms of quasi-local C∗-algebras in the Heisenberg picture [4]. The theories around
these more advanced models are certainly rich, and it remains to be seen what theory, if any,
might serve to be useful in a physical implementation of quantum cellular automata.

Several possibilities for physical implementation have also been raised. Links have been found
between QCA models and lattice gasses, spin chains, and quantum-dot configurations. Clearly,
none of these connections have yet materialized into scalable universal quantum computers. If
they had, said fact would probably be fairly well-publisized by now. But they remain intriguing
candidates in the search.

Some scientists have controversially claimed that the universe is, at some fundamental level,
a cellular automaton. Ironically, they generally try to brush aside the quantum nature of this
fundamental reality, claiming that quantum phenomena can somehow come out of lower-level clas-
sical phenomena (contradicting several mathematical arguments that this is impossible). Perhaps
people would take these computational physicists more seriously if they claimed the universe was
a quantum cellular automata.

References

[1] C. Dürr, M. Santha, “A Decision Procedure for Unitary Linear Quantum Cellular Automata”,
SIAM Journal on Computing, v.31 n.4, p.1076-1089, 2002.

[2] R. Feynman, “Simulating physics with computers”, Int. J. Theor. Phys. 21, 1982: pp. 467488.

[3] C. Pérez-Delgado and D. Cheung, “Local Unitary Quantum Cellular Automata”, Phys. Rev.
A 76, 032320, 2007.

[4] B. Schumacher and R. Werner, “Reversible quantum cellular automata”, quant-ph/0405174.

[5] J. Watrous, “On one-dimensional quantum cellular automata”, Proc. 36th FOCS, 1995: pp.
528537.

[6] http://en.wikipedia.org/wiki/Category:Computational models.

[7] http://upload.wikimedia.org/wikipedia/commons/f/fa/CA rule110s.png.

6


