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1 Introduction

While at first glance the fields of logic and probability may appear as immiscible as
oil and water, a closer look reveals that probabilistic questions about logic often have
surprisingly elegant and powerful answers. For instance, one might wonder “What is
the probability that a certain sentence in a certain logic holds for a randomly chosen
structure?” Though in many cases this question will turn out to be hopelessly complex,
it turns out that some logics in some situations are not powerful enough to define
properties with any probabilities other than 0 or 1. Results of this form, known as zero-
one laws, are of central importance in the study of this fascinating collision between
logic and randomness.

In this paper, we will begin by proving the zero-one law for first-order logic over
graphs, using an ingenious construction known as the random graph. We will then
use a related but much more general construction known as a Fräıssé limit in order to
prove the zero-one law for first-order logic over the structures of any purely relational
vocabulary.

2 Zero-One Laws and Random Graphs

2.1 Random Structures

Both for simplicity’s sake and for more important reasons which will become apparent,
the structures we are considering will only have relations, not functions or constants.
That is, our vocabulary σ will always be purely relational.

A property P of finite σ-structures is just a class of finite σ-structures closed under
isomorphism (so that relabeling a structure does not change whether it is in the class).
The sort of question we will be concerned with is “What is the probability that a
randomly chosen finite structure is in P?” A problem with this question immediately
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jumps out at us: there are an infinite number of finite structures and there could easily
be an infinite number of finite structures in P . This means that we cannot express the
probability we are looking for as a proportion in the obvious way:

number of finite structures in P
number of finite structures

=
∞
∞
.

It is clear that we need to be more careful about our definitions, in order to make sure
that our questions make sense and that we know what we are talking about.

Choosing a random structure is not so hard if we restrict our consideration to σ-
structures with universe some fixed finite set A, as there are only a finite number
of structures on any finite set. We could thus define the probability that a randomly
chosen structure on a fixed finite set A is in P . But since P is closed under isomorphism,
the only thing which distinguishes A is its size n = #(A). We might as well just use
A = {0, . . . , n − 1} as our canonical universe. We denote the set of σ-structures on
{0, . . . , n− 1} by Structn[σ] and define the probability of P on σ-structures of size n
as the ratio

µn(P) :=
# (Structn[σ] ∩ P)

# (Structn[σ])
.

As mentioned, we can’t generalize this definition to the class Struct[σ] of all finite
σ-structures (since there are infinitely many of these), but we can approximate this
concept by seeing what happens to µn(P) as n gets bigger and bigger. In particular,
we define the asymptotic probability of P as

µ(P) := lim
n→∞

µn(P).

Note that we can also relativize these definitions to some specific class of structures
C, and find the asymptotic probability that a structure in the class C has property P :

µn(P | C) :=
# (Structn[σ] ∩ C ∩ P)

# (Structn[σ] ∩ C)
,

µ(P | C) := lim
n→∞

µn(P | C).

An especially common example of this is taking C to be the class G of graphs. For our
purposes, a graph is an {E}-structure, with E interpreted as a symmetric, irreflexive
binary relation. As defined, µn(P | G) is the ratio of the sizes of two particular sets of
structures, but we can think of it in more intuitive probabilistic terms. This is because,
for any two vertices, exactly half of the (labeled) graphs on n vertices have the two
edges joined by an edge and exactly half of them do not. In fact, for any selection of m
distinct pairs of vertices, the set of graphs on n vertices can be split into 2m equally-
sized classes based on which of the m pairs they connect by an edge and which they
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do not. This means that we can compute µn(P | G) by considering a random graph
where there is a 1

2
chance that there is an edge between any two given vertices, and

these events are statistically independent. µn(P | G) is just the probability that such a
random graph has property P .

Let’s look at some possible behaviors these probabilities can exhibit:

• Take Ptriangle to be the property of containing a triangle. If n > 3k and G =
{v0, . . . , vn−1}, we can bound µn(Ptriangle | G) below by the probability that one
of the sets of vertices {v0, v1, v2}, . . . , {v3k−3, v3k−2, v3k−1} forms a triangle. This

probability is just 1−
(
1− 1

23

)k
= 1−

(
7
8

)k
. As n→∞, we can take k →∞, and

this lower bound tends toward 1 as k → ∞, so µ(Ptriangle | G) = 1. We say that
this property holds “almost surely”.

• Take Pisolated vertex to be the property of having an isolated vertex. The property of
any given vertex being isolated is 1/2n−1, so µn(Pisolated vertex | G) is bounded above
by n/2n−1. Since this tends toward 0 as n→∞, we have µ(Pisolated vertex | G) = 0.
We say that this property holds “almost never”.

• Take Peven edges to be the property of having an even number of edges. If n(n −
1)/2 (the number of possible edges) is odd, µn(Peven edges | G) is exactly 1

2
, and

if n(n − 1)/2 is even, then the probability is exactly 1
2

once you disregard the
possibility that the number of edges is exactly n(n − 1)/4, which becomes less
and less likely as n → ∞. So µ(Peven edges | G) = 1

2
; this property holds neither

almost surely nor almost never.

• Take Peven vertices to be the property of having an even number of vertices. As
n → ∞, µn(Peven vertices | G) jumps back and forth between 0 (n odd) and 1 (n
even). Thus, the limit µ(Peven vertices | G) does not even exist.

2.2 Zero-One Laws

Readers who know a thing or two about the expressive power of first-order logic will
notice something interesting about the above four examples. The first two properties,
Ptriangle and Pisolated vertex, are those which are definable in first-order logic. They are also
the ones with the relatively uninteresting asymptotic probabilities of 1 and 0. In order
to have asymptotic probabilities other than 1 or 0, it seems that the properties Peven edges

and Peven vertices must demand a sort of counting which is not first-order definable.
It turns out that µ(Ptriangle | G) = 1 and µ(Pisolated vertex | G) = 0 are just two

particular cases of a general theorem called the zero-one law for first-order logic over
graphs:
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Theorem 2.1. If the property P is first-order definable over graphs, then it must hold
either almost surely or almost never, that is, µ(P | G) must be either 1 or 0.

This is just one example of a great number of similar zero-one laws which have
been discovered. The general structure of a zero-one law is expressed in the following
definition.

Definition 2.2. A logic L has the zero-one law over a class C if for every property P
definable in L over C, µ(P | C) is either 1 or 0.

To prove that first-order logic has the zero-one law in some particular case, we will
use the technique suggested by the following proposition.

Proposition 2.3. Suppose there is an theory T of sentences such that 1. every sentence
in T holds almost surely among the structures in C and 2. T is complete (that is, for
every sentence φ, T |= φ or T |= ¬φ). Then L has the zero-one law over C.

Proof. Suppose we are given some sentence φ. By completeness of T , either T |= φ
or T |= ¬φ. Suppose T |= φ. Then φ follows from some finite number of sentences
ψ1, . . . , ψs ∈ T (by compactness). But each ψi holds almost surely among C, so φ holds
almost surely among C. If, on the other hand, T |= ¬φ, then by the above argument
¬φ holds almost surely, so φ holds almost never.

We will use this technique to prove the zero-one law for first-order logic over graphs.
The theory T used will consist of sentences known as extension axioms. Later, we will
use the technique in conjunction with a construction known as the Fräıssé limit in order
to prove the zero-one law for first-order logic over general structures.

Note that these results, and zero-one laws in general, rely on our signature being
purely relational. For instance, in the theory of the random graph plus two constants
a and b, we have the sentence E(a, b) which has probability converging to 1

2
6= 0, 1.

2.3 Extension Axioms

Extension axioms are certain sentences about graphs which are in one sense powerful
and in another sense ubiquitous. They are powerful because, taken together, they imply
that the graph contains every finite graph as a substructure (in fact, they show even
more than this, as we shall see). On the other hand, they are ubiquitous, because as
the number of vertices goes to infinity, the probability of any given extension axiom
being true goes to 1. It is this twofold nature which allows us to use extension axioms
to prove zero-one laws.

For k, l ≥ 0, the extension axiom EAk,l says that given k+ l distinct vertices, a new
vertex can be found which is adjacent to the first k and not adjacent to the last l. It
can be expressed in first-order logic.
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Definition 2.4. The extension axiom EAk,l is the sentence

∀x1 · · · ∀xk+l

[(∧
i6=j

xi 6= xj

)
⇒ ∃y

(∧
i

{
E(xi, y) i ≤ k
¬E(xi, y) ∧ xi 6= y i > k

})]
.

The theory EA is the set of all extension axioms: EA = {EAk,l | k, l ≥ 0}

Our theory T to use in Proposition 2.3 will be EA. To derive a zero-one law from
EA, we have two things to prove. First, we must show that the elements of EA (the
extension axioms) hold almost surely. After that, we must show that EA is complete.
The first part is just some basic probability:

Proposition 2.5. µ(EAk,l | G) = 1

Proof. We will prove that µ(¬EAk,l | G) = 0. The sentence ¬EAk,l says that there exist
some k + l distinct vertices such that no (k + l + 1)th vertex exists which is connected
to the first k but not the last l. We want to prove that the probability of this goes to
zero as the number of vertices in the graph goes to infinity.

Fix for a moment any x1, . . . , xk+l. For each candidate y, there is a 1/2k+l chance
that it will have the correct connections to the xi’s. So the probability that none of the
n− k − l candidates will have the correct connections is exactly (1− 1/2k+l)n−k−l.

There are n!
(n−k−l)!

ways to pick the x1, . . . , xk+l. Each one has a (1 − 1/2k+l)n−k−l

probability of being the single failure we need to demonstrate ¬EAk,l. The situation
which would maximize the probability of there being at least one failure among all the
possible choices of x’s is one in which the failures never occur simultaneously (which
would be inefficient overlap, if you’re trying to maximize the probability of there being
at least one). In this worst-case scenario, the probability of there being at least one
failure is n!

(n−k−l)!
(1 − 1/2k+l)n−k−l = O

(
nk+l(1− 1/2k+l)n

)
. This upper bound tends

towards 0 as n→∞, so µ(¬EAk,l | G) = 0, so µ(EAk,l | G) = 1.

Now we must prove completeness of EA. As one step in doing this, we will construct
a model for EA called the random graph.

2.4 The Random Graph

Since EA lets us build up subgraphs of arbitrary size within its models, it certainly
cannot have any finite models. The smallest size we can hope for is countable (that is,
countably infinite). The random graph is such a countable model.

Hopefully not confusingly, we will construct the “random” graph by a deterministic
process. Letting [i]j denote the jth bit in the binary expansion of i, we define:
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Definition 2.6. The random graph RG has vertices {v0, v1, v2, . . .}, with an edge be-
tween vi and vj iff [i]j = 1 or [j]i = 1.

It is worth mentioning that there is, in fact, a good reason to call this the “random
graph”. If you build up a countably infinite graph by adding vertices one at a time,
attaching each new vertex to any given old vertex with probability 1

2
, the resulting

graph will be the random graph with probability 1.
As promised, RG will form a model for EA.

Proposition 2.7. RG |= EA

Proof. We must verify that RG |= EAk,l for each pair k.l. So fix some k, l and suppose
we are given disjoint K,L ⊆ {v0, v1, v2, . . .} with #(K) = k,#(N) = l. We want to
find some y adjacent to every vertex in K but not adjacent to any in L. Our first guess
would be to form

s =
∑
vi∈K

2i

and take y = vs. This y is certainly connected to all the K, and we never have [s]i = 1
for vi ∈ L, but if s is too small we may yet have [i]s = 1 for some vi ∈ L. Fortunately,
this is easy to fix: just pick some ` > max(K ∪ L) and take

s′ = s+ 2`.

This number will have the same small small bits as before, so [s]i will be 1 or 0 if
vi ∈ K or L, respectively, and there will be no chance of [i]s = 1 for vi ∈ L, as
s ≥ 2` > ` > max(K ∪L) ≥ log2 max(L) + 1 (the maximum number of binary digits of
any element of L).

The surprising thing is that the converse to this proposition is also essentially true.
We need to restrict ourselves to countable models, but once that distinction is made,
every model of EA is isomorphic to RG. This is a well-known model-theoretic property
called ω-categoricity.

Proposition 2.8. EA is ω-categorical. That is, if A is countable and A |= EA, then
A ∼= RG.

Proof. We use the power of the extension axioms to inductively build an isomorphism
between any two countable models A,B |= EA. We will suppose without loss of
generality that both A and B have the universe {0, 1, 2, . . .}.

The process will work as follows:

• Begin with the trivial isomorphism i0 from A0 = ∅ to B0 = ∅.
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• On the kth step of the process, for k > 0, perform one “A to B” sub-step and one
“B to A” sub-step. The “A to B” sub-step proceeds as follows: Find the smallest
a ∈ A \ Ak−1 (that is, the smallest unmatched element of A). Let K denote
the vertices of Ak−1 adjacent to a, and let L denote the vertices of Ak−1 non-
adjacent to a. The extension axiom EA#(K),#(L), applied to the corresponding
sets of vertices ik−1(K), ik−1(L) in Bk−1 = ik−1(Ak−1), guarantees the existence
of a vertex b ∈ B such that when we extend ik−1 by sending a to b, we get an
isomorphism i′k−1 from A′

k−1 = Ak−1 ∪ {a} to B′
k−1 = bk−1 ∪ {b}.

To perform the “B to A” substep, repeat these steps with the roles of A and B

reversed, starting with i′k−1 : A′
k−1 → B′

k−1 and obtaining ik : Ak → Bk.

Since we kept on taking the smallest unmatched vertices from A and B, every vertex will
be picked eventually (by round k, we have {0, 1, . . . , k} ⊆ Ak and {0, 1, . . . , k} ⊆ Bk).
When we take the union of all the ik, we will obtain a full isomorphism from A to
B.

To derive completeness from ω-categoricity, we need a classic result from model
theory called the Löwenheim-Skolem theorem:

Theorem 2.9. If a theory T has an infinite model, it has a countable model.

Proposition 2.10. EA is complete.

Proof. Suppose there were some φ such that neither EA |= φ nor EA |= ¬φ. Then
both EA ∪ {φ} and EA ∪ {¬φ} would be consistent and have models. Since every
model of EA is infinite, this would imply by the Löwenheim-Skolem theorem that both
EA∪ {φ} and EA∪ {¬φ} would have countable models. Since EA is ω-categorical, so
these countable models would both have to be isomorphic to RG. However, we cannot
have both RG |= φ and RG |= ¬φ. Thus, such a φ cannot exist, and we have proven
that EA is complete.

Now that we have EA complete, Proposition 2.3 applies, so we have proven Theorem
2.1, the zero-one law for first-order logic over graphs.

3 Fräıssé Limits and Random Structures

3.1 Homogeneousness

One way to look at the random graph is as a graph which contains all finite graphs in
a particularly nice way. It is easy to see that RG contains all finite graphs; the process
of building up an arbitrary finite graph inside the random graph is essentially what we
did in our proof of Proposition 2.8.

7



But this isn’t enough to make the random graph ω-categorical. As an illustration of
this, take the random graph and add on an isolated vertex to obtain a new graph RG∪
{v}. This new graph also contains every finite graph, but it is clearly not isomorphic
to RG (if nothing else, EA1,0 doesn’t work on the new vertex). The reason is that,
in order to build up an isomorphism the way we did with extension axioms, we need
to be able not only to embed any finite graph in our graph, but to be able to extend
any embedding of a finite graph to an embedding of a larger finite graph. This sort of
freedom follows from a powerful property known as homogeneousness, which happens
to be the “particularly nice way” that the random graph contains all finite graphs.

Definition 3.1. A structure A is homogeneous if every isomorphism between finite
substructures of A extends to an automorphism of A. That is, if B,C ⊆ A and there is
an isomorphism i : B → C, then there is an automorphism î : A → A with î|B = i.

B
⊆ //

∼= i
��

A

∼= î
���
�
�

C
⊆ // A

Being homogeneous is enough to give the random graph ω-categoricity, and combin-
ing this with containing every finite graph is what allows us to use the random graph
to prove the zero-one law for first-order logic over graphs. We can generalize this train
of thought to prove the zero-one law for first-order logic over general structures, once
we know how to build up an analogue to the random graph: a homogeneous random
structure containing every finite structure. We do this using an even more general
construction known as a Fräıssé limit.

3.2 Fräıssé Limits

Putting it as generally as possible, we are looking for a structure which contains a given
class of structures as its class of finite substructures. However, this sort of construction
won’t be possible in general; only certain classes of structures appear as such a class.
To give a name to such collections, we will call them ages.

Definition 3.2. The age of a structure A over a signature σ (finite, with no function
symbols) is the collection K of all finite substructures of A. An age, in general, is any
collection so obtained, up to isomorphism.

We say “up to isomorphism” to mean that K is an age if there is some A such that
every finite substructure of A is isomorphic to some element of K, and visa versa.

We would like to find some set of properties of ages which taken together will imply
that a certain collection is an age. A particularly natural pair can be found:
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Definition 3.3. A collection K of finite σ-structures satisfies

• the hereditary property (HP) if for every A ∈ K and every substructure B ⊆ A,
there is some element of K isomorphic to B, and

• the joint embedding property (JEP) if, for every A,B ∈ K there exists some
C ∈ K such that A and B are both embeddable in C (isomorphic to substructures
of C).

Theorem 3.4. (Fräıssé’s Weak Theorem) A non-empty finite or countable collection
K of finite σ-structures is an age iff it satisfies HP and JEP.

Proof. (⇒) The hereditary property is true basically by transitivity, and the joint em-
bedding property can be proven by taking two embedding in A and taking their union.

(⇐) Suppose K = {A0,A1,A2, . . .}. We can construct a structure B with age K by
gluing together all the Ai. To be precise, we construct a tower of structures Bi ∈ K
inductively as follows:

• B0 = ∅.

• For k ≥ 0, Bk+1 comes from jointly embedding Bk and Ak.

We take B =
⋃

i Bi. Since Ak is embeddable in Bk+1 and Bk+1 is embeddable in
B, every Ai is a substructure of B. Conversely, any finite substructure of B must be
embeddable in some Bi ∈ K, so by the hereditary property every finite substructure of
B is in K. We have proven that K is an age.

Every collection satisfying HP and JEP will be the age of some sort of structure.
However, to make sure that the collection is the age of a unique homogeneous structure,
we need a third property.

Definition 3.5. A collection K of finite σ-structures satisfies the amalgamation prop-
erty (AP) if for every A,B,C ∈ K with embeddings e : A → B and f : A → C there
exists a D ∈ K with embeddings g : B → D and h : C → D such that ge = hf .

B
g

  @
@

@
@

A

e
??~~~~~~~

f ��@
@@

@@
@@

D

C
h

>>~
~

~
~
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If every pair of structures in K have a shared embeddable substructure, JEP is a
special case of AP, but this may not always be the case.

If an age K satisfies AP, it can be realized as the age of a homogeneous structure
called a Fräıssé limit.

Theorem 3.6. (Fräıssé’s Theorem) Suppose K is a non-empty finite or countable col-
lection of finite σ-structures which satisfies HP, JEP, and AP. Then there is a unique
structure D such that

1. D is countable or finite,

2. K is the age of D, and

3. D is homogeneous.

Definition 3.7. We call this the Fräıssé limit of K, and denote it limK.

The proof of Fräıssé’s Theorem is a bit involved, so it is omitted (a full proof can
be found in section 7.1 of [1]).

3.3 The Random Structure

Let K be the class of all finite σ-structures. This K clearly satisfies HP, JEP, and AP,
so it has a Fräıssé limit.

Definition 3.8. The random σ-structure Ran(σ) is the Fräıssé limit of the class K of
all finite σ-structures.

Just like we used graph extension axioms in Proposition 2.3 to prove the zero-one
law for graphs, we will use a generalized sort of extension axiom to prove the zero-one
law for general structures.

Given a σ-structure A on the canonical (n+1)-element universe {0, . . . , n} we define
the extension axiom EAA. It will say that every n-element substructure of our model
isomorphic to A|{0,...,n−1} can be extended to a substructure isomorphic to all of A. Or,
in first-order logic:

Definition 3.9. The extension axiom EAA is the sentence

∀x0 · · · ∀xn−1(ψ(x0, . . . , xn−1) ⇒ ∃xn(χ(x0, . . . , xn−1, xn))),

where ψ(x0, . . . , xn−1) is a formula telling every relationship between the elements {0, . . . , n−
1} and χ(x0, . . . , xn−1, xn) is a formula telling every relationship between the elements
{0, . . . , n− 1, n}.

The theory EA[σ] is the set of all these extension axioms: EA[σ] = {EAA | A ∈
Struct[σ]}.
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When I say “formula telling every relationship between the elements {0, . . . , n −
1}, what I mean is a formula such that it will hold for {x0, . . . , xn−1} if and only if
the induced substructure on that subset is isomorphic to A|{0,...,n−1} by the obvious
correspondence.

Proposition 3.10. µ(EAA) = 1, for every A.

Proof. A basic exercise in probability, essentially no different than the case for graphs.

Proposition 3.11. EA[σ] is ω-categorical.

Proof. It can easily be proven, using techniques similar to what we saw with the graph-
based extension axioms, that any countable model A |= EA[σ] must contain every finite
σ-structure. This means that A has the same age as Ran(σ). In a very similar manner,
we can prove that A is homogenous. Thus, by Fräıssé’s Theorem (3.6), A ∼= Ran(σ).

Proposition 3.12. EA[σ] is complete.

Proof. This follows from the ω-categoricity of EA[σ] in exactly the same way as it did
for EA in Proposition 2.10.

Now that we have a complete theory of sentences which hold almost surely, we know
that we have a zero-one law. The end-game proof here was practically identical to the
case for graphs. The only real difference is that we used the powerful Fräıssé limit
construction to construct an appropriately homogeneous model for our theory. This
newfound power extends far beyond this one application. Scholars have used Fräıssé
limits to prove all sorts of zero-one laws, as well as to reach into neighboring fields of
order theory and group theory.
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