
Relat syntax
All expressions in Relat are relations. Relation arguments can be

numbers or symbols (Souffle's name for strings).

Basics
Syntax Description

123 || 'abc' || "abc" constant literals

var reference to variable

let var = exp1 | exp2 let-binding

(exp) parentheses for grouping

`str` formula

escape hatch for abitrary constraints

Relational algebra

Relat represents booleans as zero-argument relations, so boolean

operators are specializations of relational operators.

Syntax Description

exp1; exp2 union

also works as boolean OR

exp1, exp2 product

also works as boolean AND

exp1 & exp2 intersection

also works as boolean AND

exp1 \ exp2 difference

some exp test if non-empty

not exp test if empty

also works as boolean NOT

exp1.exp2 dot join

exp1[exp2] (partial) relational application

exp1._ || _.exp1 || exp1[_] wildcard joins / application

projections

~exp transpose of exp

^exp transitive closure of exp

exp1 <: exp2 ||
exp1 :> exp2

prefix / suffix join

Relational abstraction

Whereas relational algebra is "pointless" (it operates on relations as a

whole), relational abstraction is "pointed" (it extracts arguments of

relations). It is similar to "comprehensions" in languages like Python,

but more general.

Syntax Description

var1[, var2, ...] : exp1 | exp2 relational abstraction (for-style)

result includes var1[, var2, ...] and
exp2

var1[, var2, ...] : exp1 -> exp2 relational abstraction (from-

style)

result only includes exp2

Aggregates

Aggregates operate on the last argument of a relation, without

removal of duplicate values.

Syntax Description

#exp count

min exp || max exp min / max

applicable to numbers or symbols

sum exp sum

applicable to numbers

concat exp concatenate

applicable to symbols; arbitrary
order

index exp add argument with unique

indices

not itself an aggregate, but useful
for building them

Scalar operators

Scalar operators operate on 1-argument relations.

Syntax Description

exp1 + exp2 || exp1 - exp2

|| exp1 * exp2

add / subtract / multiply

applicable to numbers

exp1 < exp2 || exp1 > exp2

|| exp1 <= exp2 ||
exp1 >= exp2 || exp1 = exp2

comparisons

applicable to numbers or symbols

JavaScript objects

Relat is most fundamentally run with Souffle relations as input. With

the experimental mkJsObjDB adapter, it can run directly on a

network of JavaScript objects.

Syntax Description

<prop> property access

a relation mapping obj to obj.prop

<_> wildcard property access

Relat
code

Integrating Relational Programming into a General-Purpose Language

Relational programming is typically only used when
querying large databases external to code, such as with SQL.
We believe the relational paradigm could be useful in many
different contexts if it were more tightly integrated into a
conventional, general-purpose language, operating on
runtime data.

Proper integration requires:

Level 1: A query engine that runs inside the programming-
language host.

Level 2: A compact, expressive relational language.
Level 3: A way of reinterpreting data between between the

host language and the relational language without
tedious boilerplate.

We have built an integration of relational programming into
JavaScript satisfying these requirements, centered around a
new relational language called Relat.

Josh Horowitz CSE 544, Winter 2024

How it works
Level 1: Souffle in JavaScript

We use Emscripten to build the Souffle
Datalog engine into WebAssembly, which can
be run in any JavaScript environment – the
browser and client-side with Node.

Level 2: Relat

Relat is a compact, expressive relational
language strongly inspired by Alloy and Rel.
Relat supports a variety of operations from
relational algebra, as well as “relational
abstractions” which support a more “pointed”
style.

Our implementation compiles Relat’s syntax
into Datalog which can be run by Souffle. For
example, consider the Relat code:

isHappy.hasChild

This uses a “dot join” to find children of
happy parents. It compiles to:

R1(b) :- isHappy(a), hasChild(a, b).

Level 2: Relations from JavaScript objects

Relat can be called directly from JavaScript,
passing in relations with number and string
arguments. But work in JavaScript typically
involves navigating complex hierarchies (or
networks) of objects. We explore immediate
use of Relat in this context with an adapter
called mkJsObjDB. This adapter crawls a
JavaScript object and its references,
representing links between objects in a triple
relation called okv (object-key-value).

Try our LIVE DEMO!

Souffle

Relat

mkJsObjDB

Datalog
code

Relations

User

User

JS objects

Relat
code

Relations

Example code
Scenario: IMDB movies

A data set of 1,000 popular movies on IMDB
from 2006 to 2016 available from Kaggle.

How many movies are released in each genre?

genre: hasGenre[_] | #hasGenre.genre

How many actors are connected to Vin Diesel
through co-starring in films?

#'Vin Diesel'.^(~hasActor.hasActor)

What pairs of actors act together in at least
three films?

let actors = isTitle.hasActor |
a1: actors | a2: actors | a2 > a1,
let hasBothActors = hasActor.a1 & hasActor.a2 |
#hasBothActors >= 3,
#hasBothActors, concat hasBothActors

Scenario: CSE 544 Homework 4

A database of family relations.

Which woman and which man have the most
children?

let num_children =
(x : person._ | #parent_child[x]) |

let most_mothered = max num_children[female] |
let most_fathered = max num_children[male] |
x, c: num_children &
(female, most_mothered; male, most_fathered) |

person[x]

Scenario: JavaScript AST

JavaScript code is parsed with Acorn and the
AST is fed directly into mkJsObjDB.

Which functions call themselves?

let idName = <type>.str.’"Identifier"'
 <: <name>.str |
let fnRef = (fnDecl : any ->
 fnDecl.<type>.str = '"FunctionDeclaration"',
 fnDecl.<id>.<name>.str,
 fnDecl.<body>.^<_>.idName
) |
x, y : fnRef -> x = y, x

⋮ ⋮

Relat syntax

