Technical Dimensions of

Feedback

in Live Programming Systems

Josh Horowitz, LIVE 2024

& n i pan

x rev $ chop 8 $ s “alphabet*2".# n

' § s

2"
. (iter 4) $ every 4 (density 2) $ sound “[odx, futurel

-

$ jux rev $ w 2 $.sound “gasfo:1#3 casio*2”
"t P B

You can make arcs with the prg

#t vowel (<’)
gain ”

input size degrees
epeat degrees

it speed

45 ¢ sour

Here are some procedures that

flower |

input r
epeat 2
rcleft r 90
rcright r 90
epeat 9
ray
right 160

‘Groph‘lcsl

Try running some of thé following commands to draw pictures
in the graphics box above.

bun R: ©.7))

klower S: l.ﬂ Einky R: 2.6I

Ci11

System Brow :-erl

Collections-Sequer
Collections-Text

Collections=Arraye
Collections-Stream
Collections=Suppor
Graphics-Primitives
Graphics=Display (
Graphics-Media
Graphics-Paths

Interval
LinkedlList
MappedCollection
OrderedCollection
SortedCollection

collecrt:

do:
do:andBetweenDo:
promoteFirstSuchT
reverse

‘Lu'n'

Form Editor

copying
addin g
removing
enumerating

revers

instance

collect: aBlock

“Evalvate aBlock with

anllonts
colliect:

ues nto @

an) Fand N
colieciion. C

| newCollection |

newCollection « self

self do: [:each | newCollection add: (aBlock value: each)].

tnewCollection

User lntervuptl

Paraqraph>>characterBlockAtPoint:
Paragraph>>mouseSelect:to:
CodeController{ParagraphEditor)>>processRedButton
x::o.'jgc.or.v,r.:nllgr'(F‘ar.ag}rapr»Editor} processMouseButtons
CodeController{ParagraphEditor)>>
CodeController{Controller)>>controlLoop

W50 000 = O T e o Pt = 0 000 = T e G Tl

T e e s e e e e s ke

controlActivity

controlActivity

self scrollBarContainsCursor
ifTrue:
[self scroll]
oy I riRahecanSSES* 1 v |

fibonacci

in:=1

in—1

_ fibonacdi |
in-2
_ fibonacci |

o2)

fibonacci
in: =2 [::j[:j
€))

o=)

in-1 | =1

I S 0 1
| fibonacci | =1

€))

out=

fibonacci

in-2 | =0

\iﬁbonacd' =0
e

01 -=1

in—1|
 fibonacci |

in—2

g et .
-0 O @ @IE=T

out=

Cl

fibonacci

CcL>» TOTAL

UMIT

=
1= J==1Ty |

—

r I_:l

For=
=

HETOTAL
TA

Pictures

iveness”’?

Ven mc.rand~ 0.2 @chans 16
pack 00.2 S§ T

deviate $2 list $1 50
c.Iine- @chans 16 N\ <
T

c.mtof- @chans 16

T

mc.scale~-1. 1. 0.01 0.99

\
scale 0 127 0.01 5.

e B — ’
> TR oy, . <
{/ i\ K v
mc.*~ 0.5 @chans 4 |l mc.saw~ @chans 16 |l mc.rect~ @chans 16 S var 1 = 0;
oo IR oo oo b B
mc.saw~ p wave-morph
S, Y . var scaleFactor = 1 + (20 - i)/20;
. G \ | = q
AR \ Soos resetMatrix();
O Y o i / 1) X scale(scaleFactor);
V4 T W4 \ / /A rotate(i * 6)
y. 2 - 2 S, H 0 i)
/ mc.reson~ 1 i 4 1) : . :
y =S = W/ FALL(E * 30, i * 18, 0);
4 ~ = == [
‘,' c.Iores— '/ triangle(0,0, 100,-20, 95,40);

i+=1;

~ 0
e ’
~, 0

D
o
p multi-delay
‘osnﬁ
| ======zzzza:]
(il 67t
-0.574 (-4.8dB)
L]

1506 samples (175.70 Hz)

Copies:

Add Field

prototypes (div)

o—

X 313 0
0

y
fill

763
'black’

| dom.div |

y
'black’ 7]

J on('dblclic

on('mousedown’, this)

_on('mouseup)

no_drag” «

D00

2[0.3) vpA 000000000000

System Running

*Error? v|

=g

]: No Error "t

|:|nnnnnmuuunnnnnnnnnn]‘luo;_]vL[DDDDnDDDUunnnunnnnnn
.2] v P

Main Ul Loop

=] ["Set DIO Values": Value Change

[

[Get Error

5+

Source
Type
Time
CtiRef
OldVal
NewVal

EZ

1

E
[y

@ Master |

e

IThe "Set DIO Values" was changed by the operator to %OSb.|

o

Set DIO Values

F' Set Error vI

s

@

]

»® Master Stop |

O0000000000000000000000000000000O00D00000000000

0000000000000 00cT

il |

all all |~

ntally, 0 px vertically

TEro X

aow<

MODIFIERS

_

Measurements

Task One - Bell State - Jupyte: X

C @ localhost:8 !

oS

dy-task

P P oS

v

tasks/Task%200ne%20-%20B.. 0 * O @ :

~ Jupyter Task One - Bell State @csaven A ogon
File Edit View Insert Cell Kemel Widgets Help usted Python3 O
B+ < @B 4+ & PRn B C W Code v = B
Your task Is to Write a program that represents tnis Circuit, using the arorementioned Intertace.
Remember that you may consult the reference sheet to answer any quegkiaagyou may have
regarding how to describe new components, such as the control-X
In [3]: # -- Specify circuit here! —-

circ = ger(

— Print the circuit to console —-

The Feedback Definition of Liveness:

Live programming environments provide programmers with continuous
feedback about a program’s dynamic behavior as it is being edited.

The Feedback Definition of Liveness

Live programming environments provide programmers with continuous
feedback about a program’'s dynamic behavior as it is being edited.

Tanimoto 1990: “Visual programming systems can be classified according to the degree to which they
present ‘live’ feedback to the programmer.”

Burnett et al. 1998: "Tanimoto coined the term ‘liveness, which categorizes the immediacy of
semantic feedback that is automatically provided during programming.’

Rein et al. 2018: "[Liveness] seems to be used when describing programming tools which provide
immediate feedback on the dynamic behavior of a program even while programming.”

Omar et al 2018: "Live programming environments aim to provide programmers ... with
continuous feedback about a program’s dynamic behavior as it is being edited.”

Lerner 2020: “Live programming is a coding regime in which immediate feedback is provided to the
programmer each time the program is modified.”

LIVE 2024: “Live programming systems give the programmer immediate feedback on the output of a
program as it is being edited.”

The Feedback Definition of Liveness

Live programming environments provide programmers with continuous
feedback about a program’'s dynamic behavior as it is being edited.

this way

witf

that way

d Interaction

How do users manifest their ideas, evaluate the result, and generate
new ideas in response?
Dimensions

What are the gulfs of execution and evaluation and how are they
related?

-> Dimension: Feedback loops

Which sets of feedback loops only occur together?

- Dimension: Modes of interaction

How do we go from abstractions to concrete examples and vice
versa?

- Dimension: Abstraction construction

</> Notation

How are the different textual and visual programming notations
related?
Dimensions

What notations are used to program the system and how are they
related?

-> Dimension: Notational structure

What is the connection between what a user sees and what a
computer program sees?

- Dimension: Surface and internal notation

Is one notation more important than others?

-> Dimension: Primary and secondary notations

Do similar expressions encode similar programs?

-> Dimension: Expression geography

Does the notation use a small or a large number of basic concepts?

-> Dimension: Uniformity of notations

B Conceptual structure

& Conceptual structure

How is meaning constructed? How are internal and external
incentives balanced?
Dimensions

Does the system present as elegantly designed or pragmatically
improvised?

-> Dimension: Conceptual integrity versus openness

What are the primitives? How can they be combined to achieve
novel behaviors?

-> Dimension: Composability

Which wheels do users not need to reinvent?

- Dimension: Convenience

How much is common structure explicitly marked as such?

-> Dimension: Commonality

ss» Complexity

How does the system structure complexity and what level of detail is
required?
Dimensions

What programming details are hidden in reusable components and
how?

-> Dimension: Factoring of complexity

What part of program logic does not need to be explicitly specified?

- Dimension: Level of automation

B Customizability

s> Customizability

Once a program exists in the system, how can it be extended and
modified?
Dimensions

Must we customize running programs differently to inert ones? Do

these changes last beyond termination?

-> Dimension: Staging of customization

Which portions of the system’s state can be referenced and
transferred to/from it? How far can the system'’s behavior be
changed by adding expressions?

-> Dimension: Addressing and externalizability

How far can the system’s behavior be changed from within?

-> Dimension: Self-sustainability

¥ Errors

What does the system consider to be an error? How are they
prevented and handled?

Dimensions

What errors can be detected in which feedback loops, and how?

-> Dimension: Error detection

How does the system respond when an error is detected?

-> Dimension: Error response

Adoptability

% Adoptability

How does the system facilitate or obstruct adoption by both
individuals and communities?
Dimensions

What is the attitude towards the learning curve and what is the
target audience?

-> Dimension: Learnability

What are the social and economic factors that make the system
the way it is?

-> Dimension: Sociability

Technical Dimensions of Feedback in Live Programming Systems

Reactivity Velocity

Bidirectionality Criticality

function drawTree () {
var blossomPoints = [];

resetRandom() ;
drawBranches(@, -Math.PI/2, canvasWidth/2, canvasHeight, 30,

resetRandom() ;
drawBlossoms (blossomPoints) ;

function drawBranches (i,angle,x,y,width,blossomPoints
ctx.save(

var length = tween(i, 1, 60, 12, 3) * random(0.7, 1.3)
if (i = { length = 97; }

ctx.translate(x,y

ctx.rotate(angle); [

ctx.fillStyle = "#000%;

ctx.fillRect(®, -width/2, length, width

ctx.restorel();

tipX = x + (length - width/2) * Math.cos(angle);
tipY = y + (length - width/2) * Math.sin(angle);

i>4) {
blossomPoints.push([x,y, tipX, tipY]);

i<6) {
drawBranches(i + 1, angle + random(-0.15, -0.05) * Math.|
drawBranches(i + 1, angle + random(0.15, 0.05) * Math.|

else if (i < 12) {
drawBranches(i + 1, angle + random(0.25, -0.05) * Math.|

from Inventing on Principle (Victor)

Granularity of feedback

Crossword solving stats

Bandwidth a—)

Sunday solve times

0.06

0.00 -+
15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

solve time (mins)
vega ({
data: {values: solved_sundays},
transform: [{density: 'elapsed_minutes', bandwidth: bandwidth}],
width: 400, height: 200,
mark: 'area',
encoding: {
x: { field: 'value', type: 'quantitative', title: 'solve time (mins)'},
y: { field: 'density', type: 'quantitative', scale: {domainMax: 0.06}},
Vg

title: "Sunday solve times",

Observable

f average(a):
s =0
HOREX

1=|S

return ©

average([0,2,5,8,10])

2.5X speed

Projection Boxes (Lerner)

8, 10]

S X
25 10

Granularity of feedback

How deeply into the st

/
/

function drawTree |

var blossomPoints = [];

resetRandom

drawBranches(@, -Math.PI/2, canvasWidth/2, canvasHeight, 30,

resetRandom() ;

drawBlossoms (blossomPoints) ;

function drawBranches (i,angle,x,y,width,blossomPoints

ctx.savel);

var length = tween(i

1, 60, 12, 3) * random(0.7, 1.3)

if (1 = 0) { length = 97;

ctx.translate(x,y
ctx.rotate(angle); [

ctx. fillStyle = "#000
ctx.fillRect (@, -width/2, length,

ctx.restorel();

tipX = x + (length
tipY = y + (length

v)iy
blossomPoints.push

i<6

drawBranches(i + 1,
drawBranches(i + 1,

else if (i < 12
drawBranches(i + 1

[x,y,tipX, tipY]);

width/2) * Math.cos(angle);
width/2) * Math.sin(angle);

angle + random(-0.15,
angle + random(0.15,

angle + random(0.25,

from Inventing on Principle (Victor)

ructure of a program is

Crossword solving stats

Bandwidth a—)

Sunday solve times

0.00
15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

solve time (mins)
vega ({
data: {values: solved_sundays},
transform: [{density: 'elapsed_minutes', bandwidth: bandwidth}],
width: 400, height: 200,
mark: 'area',
encoding: {
x: { field: 'value', type: 'quantitative', title: 'solve time (mins)'},
y: { field: 'density', type: 'quantitative', scale: {domainMax: 0.06}},
Vg

title: "Sunday solve times",

Observable

eedback provided?

lef average(a):
s =0
TOr X 1N a:

1=|S

return ©

=S + X

average([0,2,5,8,10])

2.5X speed

Projection Boxes (Lerner)

8, 10]

s X
25 10

Granularity of feedback

How deeply into the structure of a program is feedback provided?

Crossword solving stats

/
/

function drawTree { . i _) - -
var blossomPoints = []; §j Bandwidth 6.1 L3 ae aver‘age(a) .
resetRandom() ; Sunday solve times s =0
drawBranches(@, -Math.PI/2, canvasWidth/2, canvasHeight, 30, 0.06 v
resetRandom() ; for X 1in a:
drawBlossoms (blossomPoints) ; 0.05 S S + X
function drawBranches (i,angle,x,y,width,blossomPoints) f{ 0.04 l ;|
ctx.save(); 2
% 0.03 N 3 S
var length = tween(i, 1, 60, 12, 3) * random(0.7, 1.3); 3 return ©
if (1 = 0) { length = 97;] 0.02 8, 10] 25
ctx.translate >{,y - 001
ctx.rotate(angle); .
ctx. fillstyle = "#000"; average([90,2,5,8,10])
ctx.fillRect (@, -width/2, length, - 0.00-

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
ctx.restore(); solve time (mins)

tipX = x + (length - width/2) * Math.cos(angle); vega ({

tipY ' h h + Math. :
P y Aot LT S data: {values: solved_sundays},

i>a) transform: [{density: 'elapsed_minutes', bandwidth: bandwidth 25X d
blossomPoints.push([x,y, tipX, tipY]); " [{density e Ll fe ncws 3. . Spee

width: 400, height: 200,
mark: 'area',

i<6)
drawBranches(i + 1, angle + random(-0.15, . * . encoding: {
drawBranches(i + 1, angle + random(0.15, @. : - x: { field: 'value', type: 'quantitative', title: 'solve time (mins)'},
else if (i < 12) { y: { field: 'density', type: 'quantitative', scale: {domainMax: 0.06}},
drawBranches(i + 1, angle + random(0.25, . * . e
’

title: "Sunday solve times",
1)

from Inventing on Principle (Victor) Observable Projection Boxes (Lerner)

< visible output »

< program »
composed of parts

Granularity of feedback

How deeply into the structure of a program is feedback provided?

still from Inventing on Principle (Victor)

“Linking” outputs

eactivity of feedback

Ht o oautov D > value > wt oautov D >
["hello", "LIVE", "friends!"] value.toSor‘ted()|
[[
"hello" "LIVE"
"LIVE" "friends!"
"friends!" "hello"
]]

Natto

je - o autov D — je - o oautov D — e) (= o oautov D >

value.toSorted() .| value.toSorted().toRey|

Unexpected token ')’ é undefined

value.toSorted().toReversed()|

é [
"hello"

"friends!"
"LIVE"

Reactivity of feedback

How often are changes to a program responded to with feedback?

11 auto > A —— value > ri+ auto > > A
["hello", "LIVE", "friends!"] value.toSorted()| o value.toSorted () womep#®seq()|

{ !' |
hello" LIVE hello"
LIVE friends!" friends!"
friends!" hello" LIVE

Ik

value.toSorted() .|

Natto

value.toSorted e sed ()|

EII (
hello"

friends!"
LIVE

¢

Unexpected token ')' é

value.toSorted().toReV

Reactivity of feedback

How often are changes to a program responded to with feedback?

Crossword solving stats
¢ Bandwidth 6.1 e

ssssssssssssssss

-value -value
. 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
T solve time (mins)
value.length vegal value.length
data: {values : solved _sundays },
rrrrrrrrrr [{density: 'elapsed_minutes', bandwidth: bandwidth}]
width: 400, height: 200,
mark: 'area',
11 encoding: { 11
x: { field: 'value', type: 'quantitative', title: 'solve time (mins)'},
y: { field: 'density', type: 'quantitative', scale: {domainMax: 0.06}}
},
title: "Sunday solve times" 0
)
Observable (auto-run off) Observable Observable (auto-run on)

Velocity of feedback

How quickly is feedback available?

Velocity of feedback

How quickly is feedback available?

Today...

o Implementation
concerns

(incrementality)

e Design concerns

IBM 029 card punch for batch computer Timesharing computer

Bidirectionality of feedback

Can programs be edited by acting on feedback?

extractor @

] TA

a

e)‘ Sketch-n-Sketch File Code Tools View Options Output Tools * patterns $ L que ry . pages sk t lt 1e x
Current file: Untitled * o Context: Program Bulltin Tools $ query.pages. x. extract X
O © Undo Clean Up (<] m ‘ k Cursor /
j otnde © = ‘ = / $.query.pages.*.fullurl X
; equ”répt [;3, e [)3(2’*),2]; 3))/ 2 2 +y3 31 % (x2 - x3)) / 2 0 PolntorOffss c
t 3! - !, - sgrt 3! - ! 7
O O Z [(x2 + x3 + sqr y2 - y3)) (y2 + y3 - sqr x2 - x3))] e — new pattern
4 oneThirdPt [x3, y3] [x, y] = S — User-Defined Tools
| [x/1.5+x3/3!,y/1.5 +y3/3!] 5 o © Tript 1n>. v
6 equiTriPt equilri 3 « [C 1
O 7 point = [39, 314] - 5 title: _2016 Drapac Cycling season
O g oint2 = [490, 301] Q, oreThidbt o) ol thumbnail: {
O 10 " o @ makekochpts source: 'https://upload.wikimedia.org/wikipedia/en/tht
11 makeKochPts depth point point2 = — - % makeKochPts Drapac_Professional_Cycling_logo.png'
f 12 let oneThirdPt2 = oneThirdPt point point2 in . .
13 let oneThirdPt3 = oneThirdPt point2 point in vec2DPlus width: 50
14 1et equiTriPt2 = equiTriPt oneThirdPt3 oneThirdPt2 in o) = height: 50
15 if depth < 2 then o vec2DLength
o 16 [point, oneThirdPt3, equiTriPt2, oneThirdPt2] . o }
o 17 else circle . - . . .
o) 18 let makeKochPts2 = makeKochPts (depth - 1) point oneThirdPt3 in O) pagelimage: Drapéc—.P rofess10na1_Cyc11ng_logo. png
o o 19 let makeKochPts3 = makeKochPts (depth - 1) oneThirdPt3 equiTriPt2 in i contentmodel: 'wikitext'
20 let makeKochPts4 = makeKochPts (depth - 1) equiTriPt2 oneThirdPt2 in ‘ ellipse 1 - '
o 21 let makeKochPts5 = makeKochPts (depth - 1) oneThirdPt2 point2 in & pagetlanguage: "en
o0 © o © ° 1 g concat [makeKochPts2, makeKochPts3, makeKochPts4, makeKochPts5] ") rect pagelanguagehtmlcode: ‘en'
o (o] a .
o °° 00?° 24 depth = 3{1-5} W, squere pagelanguagedir: 'ltr'
o 25 = . 1 _ _ . R 1
0° 26 topPts = makeKochPts depth point point2 \J line tOUChed' q 2024-10-16T06:01:01Z
27 astrevid: 1199070005
28 botCorner = equiTriPt point2 point . rectByCenter length : 7665
29 .
gg rightPts = makeKochPts depth point2 botCorner ! squareByCenter fullurl: 1 https . //en-Wlklped ia- Org/Wlkl/2016_D rapac_cyc
32 leftPts = makeKochPts depth botCorner point 2 ¢ WEMEULEE: editurl: 'https://en.wikipedia.org/w/index.php?
33 & i title=2016_Drapac_Cycling_season&action=edit'
34 snowflakePts = concat [topPts, rightPts, leftPts] B . . - P N y .g_ S
35 e e canonicalurl: 'https://en.wikipedia.org/wiki/2016_Drapat
36 polygonl = . e — : extract: '<p>The 2016 season for the Drapac
37 let pts = snowflakePts in nHorizontalPointsSepBy . . .
38 let [color, strokeColor, strokeWidth] = [124, 360, 2] in = Professional Cycling team began in January at
39 polygon color strokeColor strokeWidth pts © 9 nVerticalPointsSepBy the Tour Down Under and Tour de San Luis. The
- svg (concat ["o, pointsBetweenSepBy team participated in UCI Continental Circuits
42 [polygon1] Oo . }
8D o T 52616112: {

pageid: 52616112
ns: @

SketCh'n'SketCh (Hempel et al) title: 'Guam women's national volleyball team'
thumbnail: {
Engraft (me)

Criticality of feedback

Etoys: ComputerLogicGame

ComputerLogcham D ‘ ‘ . - . . 0 m

=
O Not active | » ticking & B
Test Not's licolor sees color E
Yes Not's graphic « NotOff's graphic
D
<4

E No Not's graphic « NotOn's graphic

@ = L 8D
Parts Bin —costumes D D D q

eloys

Criticality of feedback
Is feedback a side effect, or part of the critical path of computation?

Etoys: ComputerLogicGame

XL ELL 5w ON

4

def average(a):

—
||

s =0 L } g . O Not active | b ticking @ B
‘FO[X - a g - W : vTest Not's Micolor sees color &
¥ 1n .
Yes Not's graphic « NotOff's graphic
S =S @— No Not's graphic « NotOn's graphic D
i
1 4 —
@]) D
return © e
10] 25 1@
b
average([0,2,5,8,10]) : - ?)
5, 8, 16 e t
2.5X speed
® +1' . . W ..:.‘:_ .
Parts Bin @m— D 1> :
Costumes D q

Projection Boxes (Lerner) eloys

Criticality of feedback

Is feedback a side effect, or part of the critical path of computation?

Naive realism is an extension of the “what you see
is what you have” idea that has become common-

You can make arcs with the procedures ARCRIGHT and RRCLEFT.

input size degrees
te"e"’t dearees Foruard size place in the design of text editors and spreadsheets,
, e l but not for programming languages. The point is that
i M%Saiz memmm e users should be able to pretend that what they see
{ cpeat 2, | on the screen is their comptitational world in its
_ rcleft r 90 .
Er_cgaut_r_?_el entirety. For example, (1) any text that appears on
, fepeat 9 EX 159] the screen—whether typed by the system, entered
= — , by the user, or constructed by a program—can be

moved, copied, modified, or (if it is program text)
evaluated; (2) you can change the value of a variable
simply by altering the contents of the variable box
on the screen. If a program modifies the value of a
variable, the contents of the box will be automati-
cally updated on the screen. In general, there is no
Try running sone of the following comnands to draw pictures need to query the system to display its state, nor any

g need to invoke a state-change operation to affect the
system indirectly.

Eun R: 0.?4 [flower S: 1.4 slinky R: 2.6

Boxer (diSessa & Abelson)

“Naive realism” in Boxer

Technical Dimensions of Feedback in Live Programming Systems

Granularity
How deeply into the structure of a program is feedback provided?

Reactivity
How often are changes to a program reacted to with feedback?

=wee Velocity
How quickly is feedback available?

¢ .2, Bidirectionality
Can programs be edited by acting on feedback?

Criticality
[s feedback a side effect, or part of the critical path of computation?

Appendices

The Feedback Definition of Liveness

Live programming environments provide programmers with continuous
feedback about a program’'s dynamic behavior as it is being edited.

this way

e—> wtf

less more
no that way

Moldability of feedback

add vectors

w

PANE (me)

Moldability of feedback

add vectors

w

N

add vectors {=x: @b.x + @D .= _
6 ly= °Y + w ‘y}
v w % X 3.8
y 4 & Y 5.6
X 6 X =2,2 "
y 4 Y 1.6 X
X w2
Y 1.6
w
PANE (me)

: B .x + QY .x
v .y + w .y}

NV

also PANE (still me)

Moldability of feedback

How can feedback be shaped to reflect domain-specific meaning?

+ X
a MyOrganization m i

Repos Raw Print Meta

feenkcom/jdt2famix
feenkcom/FameJava
feenkcom/libMoz2D
feenkcom/sparta
feenkcorp/gt4gemstone-old

R

feenkcom/roslyn2famix

feenkcom/gtoolkit MOldable Viewe rS

feenkcom/gtoolkit-examples
feenkcom/pdt2famix Create custom viewers for your problem at
teenkcom/gtoolkit-visualizer hand. Clerk's viewer APl is extensible via
feenkcom/gtoolkit-demos . . .

predicate functions, not only acting on
fenkcorm/atokit ohiow types but also on values. Build stateful
feenkcom/external-volatile-store viewers with Reagent and dynamlcally
feenkcom/gtoolkit-inspector import JavaScript libraries.

feenkcom/gtoolkit-documenter

feenkcom/gtoolkit-constrainer

feenkcom/pillar

feenkcom/gtoolkit-playground

Clerk

feenkcom/gtoolkit-completer
feenkcom/gtoolkit-debugger
feenkcom/gt4smacc

feenkcom/gtoolkit-coder

Glamorous Toolkit

