EpiPEn: A DSL for Solving Epistemic Logic Puzzles with Z3

Josh Horowitz, Jack Zhang

December 10, 2021

1 Introduction

There’s a class of logic puzzles that, at first sight, looks
impossible to solve. A classic example is Cheryl’s Birth-
day [1]
Albert and Bernard just met Cheryl. “When’s your
birthday?” Albert asked Cheryl.

Cheryl thought a second and said, “I’'m not going to
tell you, but I'll give you some clues”. She wrote down
a list of 10 dates:

May 15, May 16, May 19, June 17, June 18, July
14, July 16, August 14, August 15, August 17.

“My birthday is one of these”, she said.

Then Cheryl whispered in Albert’s ear the month—and
only the month—of her birthday. To Bernard, she
whispered the day, and only the day.

“Can you figure it out now?” she asked Albert.

Albert: I don’t know when your birthday is, but
I know Bernard doesn’t know either.

Bernard: I didn’t know originally, but now I do.
Albert: Well, now I know too!

When is Cheryl’s birthday?

This puzzle is particularly difficult, because it requires
us to reason at a higher level than first order logic.
When Albert and Bernard talks about what they know
and don’t know, they implicitly reveals properties of
their knowledge. This class of logical puzzle, where rea-
soning about knowledge and ignorance is required, is
called epistemic puzzles.

We designed and implemented a domain specific
language called EpiPEn (Epistemic Programming
Environment) in which these puzzles can be expressed
and solved, using Z3 [2] as an underlying SMT solver. In
this paper, we will describe the logical encoding under-
lying EpiPEn, give some details on the design and im-
plementation of the DSL itself, and present the results
we found applying this DSL to six different puzzles.

2 Logical encoding

To encode epistemic logic puzzles formally, we need to
encode statements about what agents do or do not know.
Traditional logics, such as first-order logic, are not suffi-
cient — they can say that ¢ is true, but not that agent A

knows . If we introduce a new operator K 4¢ meaning
“agent A knows ¢”, we arrive at a new (modal) logic
called epistemic logic [3]. The other wrinkle, in mod-
elling epistemic-logic puzzles, is that they often involve
tracking changes in an agent’s knowledge as new infor-
mation is revealed — usually through public announce-
ment. To model this, we might for instance introduce an
operator ¢y meaning “after ¢ is publicly announced,
1 holds”. This gives us a particular dynamic epistemic
logic known as public announcement logic [1] [4].

While this formalism is a helpful start, it is not ob-
vious how to make use of it in a world with plenty of
first-order SMT solvers but no dynamic-epistemic-logic
solvers. Fortunately, we discovered that a significantly
limited formalism, relying only on first-order logic, cov-
ered nearly all puzzles.

Surveying epistemic-logic puzzles, we observed a com-
mon structure. Each puzzle is centered around a set of
unknown constants (e.g., the day and month of Cheryl’s
birthday). Each character is given access to a specific
set of constant values. Then there is a series of pub-
lic announcements, each either by an omniscient story-
teller (e.g. Cheryl) or by one of the various characters.
These public announcements add to a pool of common
knowledge, which affects what the characters do and do
not subsequently know. Public announcements can, of
course, include statements about characters’ knowledge
at that time — that’s what makes these puzzles epis-
temic.

To roughly formalize this:

A “story” starts with a set {A;} of characters and a
set {z;} of unknown constants. As the story proceeds,
we will track a changing “knowledge state”. This state
consists of:

e a map knows : {A;} — P({x;}) stating which con-
stants character A; has been given direct access to,
and

e a common-knowledge formula x, which all charac-
ters know.

Two basic events can occur in a story which change the
knowledge state:

e A character A can be given direct access to a con-
stant = (e.g., when Cheryl whispers the month in
Albert’s ear). This simply results in z being added
to the set knows(A).



e A character A can make a public announcement
1. This results in the common knowledge « being
replaced with k A K 4.

But we said we were working solely in first-order logic.
What does K 41 mean? In the context of a given knowl-
edge state, we define:

K 41 := V¥ (constants not in knows(A4)) : K — 1.

Here’s a helpful way to understand this condition. An
assignment of values to all the constants would usu-
ally be called a “model”, but we will call it a “possi-
ble world”. A character’s knowledge tells them that not
all “possible worlds” are actually possible — only those
where A’s known constants have the values A knows
they do, and « holds. Call these A’s “accessible worlds”
— worlds consistent with A’s knowledge. Then A knows
¥ if ¢ holds in all worlds accessible to A. (This is es-
sentially the “partition principle” of epistemic logic.)

Note that K41 has, as free variables, (all or some
subset of) the constants in knows(A). This means that
A can evaluate this formula to true or false, to know
whether or not they know 1. This also means that, if
A announces K41 (or a formula containing it), some
other agent A’ can reason about the implications of this
announcement without necessarily having direct access
to the values of the constants in knows(A).

Now we know how to update a knowledge state in
response to an event in a puzzle’s story. T'wo more notes
before we move on:

1. Knowing values, rather than facts

We now know how to say “A knows v” in first-order
logic. How do we say “A knows the value of an expres-
sion €”7 Define

KVjpe:=Fv:Ka(e=v).

This correctly captures the meaning of “A knows the
value of ¢” — there’s some value v (perhaps unknown to
us) for which A knows that the expression equals v.

2. Tterating knowledge operators

We said that, when A makes a public announcement of
1, Kk is augmented by K4, not just ¢. This is impor-
tant — when a character says something, they don’t just
reveal the truth of that statement, they also reveal that
they could infer that truth from their prior knowledge.

We only needed to add K v to k, not 1 A K41, be-
cause K41 — 1 is a theorem for all ¢. (We confirmed
this with our SMT solver.) This means our logic satisfies
the modal axiom M [5].

But why stop there? Why don’t we need to add
KaKav, etc.? Because K41 — KaK v is also a the-
orem for all . (We also confirmed this with our SMT
solver.) This means our logic satisfies the modal axiom
4 (a.k.a. positive introspection) [5].

; announce (Albert,
5 # A

3 DSL design & implementation

We implemented this puzzle formalism and logical en-
coding as a domain-specific language in Python called
EpiPEn (Epistemic Programming Environment).

We knew we wanted to embed our language in a gen-
eral scripting language, to avoid re-implementing com-
mon programming primitives which a user might wish
to use in describing puzzles, such as loops. We chose
Python due to its popularity and ease of use, and be-
cause there are well-supported Python bindings for Z3,
our SMT solver.

However, as Python does not support general meta-
programming features (as Racket does), we were re-
stricted to a shallow embedding. It was a challenge to
implement our library’s API in a way that let users in-
put puzzles concisely and idiomatically, given this con-
straint.

Here is a complete listing for how the Cheryl’s Birth-
day puzzle can be expressed and solved with EpiPEn:

from epipen import x*
from z3 import *

start_story ()

Albert, Bernard = Characters(’Albert Bernard’)
month, day = Ints(’month day’)
# C gives A and B the possible dates.
announce (storyteller,
Oor ([
And (month == m, day == d)
for (m, d) in
[(5, 15), (5, 16), (5, 19), (6, 17),
(6, 18), (7, 14), (7, 16), (8, 14),
(8, 15), (8, 17)]
iD)

)
# C whispers to A and B.
learn_constant (Albert, month)
learn_constant (Bernard, day)
# A: I don’t know when your birthday is...
Not (know (value_of=day)))
but I know B doesn’t know either.
announce (Albert, Not (know(Bernard, value_of=
month)))
# B: I didn’t know originally, but now I do.
announce (Bernard, know(value_of=month))

# A: Well, now I know too!
announce (Albert, know(value_of=day))

5 print_possible_worlds ()

# > printing up to 10 possible world(s)

# > [day = 16, month = 7]

# > (and that’s all)

We hope the code mostly speaks for itself. A few quick
notes of clarification:

1. The two “basic events” that transform the knowl-
edge state are performed here with learn_constant
and announce.



2. On line 25, the function know (with value_of=) is
used to express K Viipertday. The Albert here is
implicitly assumed, since Albert is the one making
the announcement. (Some hacks were needed to
make this possible — an example of the challenges of
embedding a DSL shallowly in Python.) On line 27,
Bernard is provided explicitly, since here Albert is
speaking about Bernard’s knowledge, not his own.

3. To express K 41, rather than KV e, a user can use
the variant know(A, that=ty). (Surprisingly, this
version was not used directly in any of the puzzle
solutions we constructed.)

3.1 Implementation

Implementation was relatively straightforward.

One tricky aspect was speed. The most important
responsibility of our system, performance-wise, is to
avoid unnecessarily inflating the size of the common-
knowledge formula k. A large, complex k will take our
SMT solver a long time to solve. Keeping k small is
especially important because every use of know() adds
an additional copy of the old common-knowledge for-
mula inside the new one. For instance, an announce-
ment of know(that=vy) replaces k with kK A Ka9p =
KA (V(--+):k — ). This final expression has two oc-
currences of k; we have at least doubled the size of our
common-knowledge formula. So a small improvement
in the size of k early on can avoid huge blow-ups later.

Here are two tricks our system uses to try to keep
small:

1. We make use of Z3’s quantifier-elimination and

simplification capabilities. In particular, rather
than replacing x with x A v, we replace it with
simplify(x A quantifier-elimination(%))).
Quantifier elimination is absolutely essential for Z3
to be able to handle puzzles — even on a puzzle
as simple as Cheryl’s Birthday, it leads to a 20x
speedup. Simplification leads to a more modest but
still helpful 2x speedup on more complex puzzles.

2. Our model says that an announcement of
know(that=1) should replace x with x A K.
However, quite often the K 41 here could be re-
placed with just . This will be the case, for in-
stance, when ¥ = K4, since, as mentioned ear-
lier, the ”positive introspection” theorem asserts
Kap — KaKap. It will also be the case when
1 = K4, since an analogous "negative intro-
spection” theorem asserts K p — K4~ Kap. To
cover these cases, and more, we add an extra check.
When character A announces 1), we ask Z3 whether
1 — K1 is a tautology. If it is, we only add ¥ to
K, not K 1.

This check is usually quite fast: 0.05 seconds
or so per announcement. It leads to significant

speedups — we’ve seen more-than-100x improve-
ments for complex puzzles.

4 Results

We investigated some of the more well-known puzzles in
this area, and found various degree of success in encod-
ing them in our language and solving them. Here we
present our encodings and results.

4.1 Chery!l’s Birthday

Our encoding of the Cheryl’s Birthday puzzle is used as
the central example in the "DSL design & implemen-
tation” section above. The encoding is, in our opin-
ion, straightforward, readable, and ergonomic for the
encoder.

Note how a list comprehension is used to turn the
initial list of possible dates into a logical constraint. This
is a nice example of using a feature of the embedding
language (Python) to improve expressiveness of puzzle
encoding.

We use “# >” comments to show lines printed out
by code samples. As the output lines at the end of
the listing above show, EpiPEn is able to solve the
Cheryl’s Birthday puzzle, outputting the solution July
16th. This solution takes a bit less than a second on a
2016 Apple MacBook Pro.

4.2 Consecutive Numbers

Anne and Bill get to hear the following: “Given are
two natural numbers. They are consecutive numbers.
I am going to whisper one of these numbers to Anne
and the other number to Bill.” This happens. Anne
and Bill now have the following conversation.

Anne: “I don’t know your number.”
Bill: “I don’t know your number.”
Anne: “I know your number.”
Bill: “I know your number.”
First they don’t know the numbers, and then they do.

How is that possible? What surely is one of the two
numbers? [4]

1 from epipen import *
2 from z3 import *

start_story ()
5 Anne, Bill = Characters(’Anne Bill?’)
¢ A, B = Ints(’A B’)

s announce (storyteller,
9 And(A >= 0, B >= 0,

10 Or(A == B + 1, B == A + 1)))
11 learn_constant (Anne, A)
12 learn_constant (Bill, B)

14 # A: ’I don’t know your number.’
15 announce (Anne, Not (know(value_of=B)))
16 # B: I don’t know your number.’



announce (Bill, Not (know(value_of=A)))
# A: ’I know your number.’

announce (Anne, know(value_of=B))

# B: ’I know your number.’

announce (Bill, know(value_of=A))

print_possible_worlds ()
# > printing up to 10 possible world(s)

# > [A = 2, B = 3]
# > [A =1, B = 2]
# > (and that’s all)

Here, we start with an infinite number of possible
worlds, as A and B can be any pair of positive consecutive
integers. In fact, the set of possible worlds stays infi-
nite through the first two announcements, as a user can
observe by adding additional print_possible worlds

from epipen import *
from z3 import *

n, k =6, 3
6 start_story ()

[Character (f"children[{i}]") for i in

s children
9 is_muddy

actual_world = World({is_muddy[il:

# Each child sees which others are muddy
for i in range(n):

[Bool(f"is_muddy[{i}]") for i in range(n)]

i < k for i in range(n)})

commands earlier in the program. But reasoning about
this infinite domain isn’t any real trouble for Z3, and
EpiPEn is still able to solve for a solution: one of their
numbers must certainly be 2.

4.3 Muddy Children

Imagine a large family of n children. Exactly k become
muddy while playing outside. A child can see which
other children are muddy, but not if he or she is muddy.
Father says that at least one of them is muddy, and
then says, “In a moment I will clap my hands. If you
know whether you are muddy, please step forward.” He
then repeats this request over and over again, until all
children have stepped forward. What will happen? [4,
paraphrased|]

38 # > Step 1
39 # > Step 2
0o # > Step 3
41 # > child O steps forward
12 # > child 1 steps forward
13 # > child 2 steps forward
14 # > Step 4

range (n)] 15 # > child O steps forward
46 # > child 1 steps forward
17 # > child 2 steps forward
45 # > child 3 steps forward
19 # > child 4 steps forward
50 # > child 5 steps forward

15 for j in range(mn):

16 if i !I= j:

17 learn_constant (children[i], is_muddy[j])
18

10 # Father: ’At least one of you is muddy’

20 announce (storyteller,
for step in range(1, 1000):

22 print (£"Step {stepl}")

23 # Father: ’If you know whether you are muddy,
4 all_step_forward = True

5 with simultaneous () :

26 for i in range(n):

27 is_muddy_formula = know(children[il],
28 is_actually_muddy =
29 if is_actually_muddy:

print (£"child {i} steps forward")
announce (children[i],
else:
announce (children[i],
all_step_forward = False
if all_step_forward:
36 break

This encoding is the most complex yet. After initial
set-up, we enter a loop of ”steps”. In each step, each
child considers whether or not they know if they are
muddy. They then step forward, or do not step forward,
acting as an announcement of this fact.

This requires two features we have not discussed yet:

Or ([is_muddy[i] for i in range(n)]))

step forward’

value_of=is_muddy[i])

actual_world.value_of (is_muddy_formula)

is_muddy_formula)

Not (is_muddy_formula))

e This puzzle is a bit different than previous ones.
In previous puzzles, we are told what actions took
place and are asked to infer the previously-hidden
state of the world. In this puzzle, we know the state
of the world and are asked to simulate what actions
will take place as a result of this state.

To reflect this new structure, on line 11, we con-



struct a World object which contains the actual
settings of the constants in the puzzle. We use this
object on line 28 to determine if a child will actually
step forward or not, based on what they see.

e This puzzle also involves simultaneous actions —
each child chooses to step forwards or not simul-
taneously, without taking notice of the other chil-
dren’s actions in that step.

To express this simultaneity, we use a
simultaneous() block, starting on line 25.
Here’s what this means operationally: Entering
this block, the common knowledge is frozen. All
uses of know() inside the block will refer to this
frozen common knowledge. All uses of announce ()
inside the block have their effects deferred until
the block closes.

4.4 Who Has the Sum?

Anne, Bill, and Cath all have a positive integer on their
forehead. They can only see the foreheads of others.
One of the numbers is the sum of the other two. All the
previous is common knowledge. They now successively
make the truthful announcements:

Anne: “I don’t know my number.”
Bill: “I don’t know my number.”
Cath: “I don’t know my number.”

Anne: “I know my number. It is 50.”

What are the other numbers?

This puzzle is very straightforward to encode. However,
when we ran the code, the solver wasn’t able to solve
it within a reasonable time. When we examined the
intermediate states of the puzzle, we discovered that the
first announcement:

Anne: “I don’t know my number.”

yielded a very complicated Boolean expression about
the three integer variables. A human analyst could in-
fer that this announcement should really only contribute
a simple formula to the common knowledge: B # C. (If
Bill and Cath’s numbers were equal, then Anne would
have known that her number must be the sum, as her
number can’t be zero). Our SMT solver was unable to
perform simplifications like this, leading to extremely
large formulas that it could not solve efficiently. Ideally,
we would find means to automatically simplify formu-
las constructed by our system. Until then, we decided
to add a feature to our DSL to let the user provide
hand-written simplification hints. We can still use the
solver to verify these hints, ensuring the correctness of
the analysis.

I from epipen import *
2 from z3 import *

I start_story ()

5 with assert_adds_ck(Not(B ==

7 announce (Bill,

3 # >

Anne, Bill, Cath =Characters(’Anne Bill Cath’)
A, B, C = Ints(’A B C?)
announce (storyteller, And(
A>0,B>0,C>o0,
Or(A == B + C, B == A+ C, C == A + B)
))
learn_constants (Anne, [B, CJ)
learn_constants (Bill, [A, C])
learn_constants (Cath, [A, B])

C)):
announce (Anne, Not(know(value_of=A4)))
Not (know (value_of=B)))
Not (know (value_of=C)))
50)

announce (Cath,
announce (Anne, A ==

print_possible_worlds ()
# > printing up to 10 possible world(s)
[C = 30, A = 50, B = 20]

# > (and that’s all)

On line 15, a block is introduced with assert_adds_ck
together with a hint about what the contents of the
block are expected to add to the common knowledge
(B # C, in this case). Our system uses our SMT solver
to verify that the effect of running the contents of this
block is equivalent to the effect of ignoring the contents
and just adding the hint onto the common knowledge
(with A) instead.

With this hand-written simplification, EpiPEn is able
to generate the correct solution within a minute — slower
than most, but manageable.

4.5 Limitations

Here we discuss two puzzles that EpiPEn is not cur-
rently able to solve.

The unexpected hanging paradox

At a trial a prisoner is sentenced to death by the judge.
The verdict reads “You will be executed next week, but
the day on which you will be executed will be a surprise
to you.” The prisoner reasons as follows. “I cannot be
executed on Friday, because in that case I would not
be surprised. But given that Friday is eliminated, then
I cannot be executed on Thursday either, because that
would then no longer be a surprise. And so on. There-
fore the execution will not take place.” And so, his
execution, that happened to be on Wednesday, came
as a surprise. So, after all, the judge was right. What
error does the prisoner make in his reasoning? [4]

The problem here lies with the expressive power of our
formalism. The notion of a surprise could seemingly
be encoded as ~KV41. However, here we are dealing
with a claim that the prisoner will be surprised, even
after being informed that they will be surprised. This
means that =KV, must be interpreted relative to a
knowledge state that includes =K V1. This is a twisty
bit of self-reference that EpiPEn is simply unable to
model.



Sum and Product

A says to S and P: I have chosen two integers z, y
with 1 < z < y and z + y < 100. In a moment I will
inform S of their sum s = = + y, and I will inform P
of their product p = xy. These announcements will
remain secret. You are required to make an effort to
determine the numbers x and y. He does as announced.
The following conversation now takes place:

P says: I don’t know the numbers.
S says: I knew you didn’t know the numbers.
P says: Now I know the numbers.

S says: Now I also know the numbers. [4]

This one, on the other hand, although easy to encode,
proves to be very difficult for the underlying solver. As
it involves non-linear operations on the integers, we were
not able to solve this puzzle within a reasonable time.
It’s also not feasible to provide the solver with hand-
written simplification, as the reasoning of the puzzle
requires us to express that, for example, “p is not a
prime”. To express this, we need two for-alls over an in-
teger multiplication, which is not something the solver
performs very well on.

5 Future work

Future work on EpiPEn should include more perfor-
mance tuning. This would include careful profiling, to
find unnecessarily expensive computations. Significant
performance improvements could also come from more
sophisticated logical analysis — our current approach
uses very little knowledge about the specific properties
of KAi/}.

We are also interested in applications. It would be
fascinating to see how puzzle designers make use of our
system to double-check their work, and perhaps to ex-
plore spaces of novel puzzles more creatively. And for-
mal modeling and analysis of knowledge and communi-
cation might have applications beyond just puzzles:

e In the linguistic field of pragmatics, the “cooper-
ative principle” asserts that people structure their
communications to convey the information desired,
with all participants taking into account knowledge
held by other participants.

e The field of cryptography is centered around con-
trolling access to secret information, even as com-
munication occurs.

Perhaps the methods we developed here could be appli-
cable to problems in these domains.

6 Logistics

6.1 Teamwork

Both team members worked together to solve puzzles
and encode them in our DSL. Josh designed the log-
ical encoding (in terms of unknown constants, knowl-
edge states, and first-order K 41)). Josh also designed
and implemented the DSL. Jack led writing the paper,
and investigated providing hand-written simplification
to the puzzles.

6.2 Course Topics

In our project, we mainly focused on the application of
SMT solvers. We used the Z3 SMT solver as the un-
derlying solver for our DSL in multiple places — both to
solve common-knowledge formulas for concrete models,
and to check for tautologies along the way.

References

[1] Alexandru Baltag and Bryan Renne. Dynamic Epis-
temic Logic. In Edward N. Zalta, editor, The Stan-
ford Encyclopedia of Philosophy. Metaphysics Re-
search Lab, Stanford University, Winter 2016 edi-
tion, 2016.

[2] Leonardo De Moura and Nikolaj Bjgrner. Z3: An ef-
ficient smt solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 08/ETAPS’08, page
337-340, Berlin, Heidelberg, 2008. Springer-Verlag.

[3] Rasmus Rendsvig and John Symons. Epistemic
Logic. In Edward N. Zalta, editor, The Stanford En-
cyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, Summer 2021 edition, 2021.

[4] Hans van Ditmarsch and Barteld Kooi. One Hundred
Prisoners and a Light Bulb. Springer International
Publishing, 2015.

[5] James Garson. Modal Logic. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philoso-
phy. Metaphysics Research Lab, Stanford University,
Summer 2021 edition, 2021.



	Introduction
	Logical encoding
	DSL design & implementation
	Implementation

	Results
	Cheryl's Birthday
	Consecutive Numbers
	Muddy Children
	Who Has the Sum?
	Limitations

	Future work
	Logistics
	Teamwork
	Course Topics


