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UROP Proposal

Two branches of research:

1 Analyze errors of gradients.

‘. . . I will investigate error in the ubiquitous “gradient”
algorithm, which determines the distance from a processor
to a designated region. My investigation will involve both
conceptual analysis of mathematical models and
quantitative analysis of computer-run simulations.’

2 Make Proto fold.
‘. . . I will also pursue the project of implementing

Radhika Nagpal’s biologically-inspired Origami Shape
Language in the STPG’s Proto programming language.’
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Gradients

The Algorithm

The gradient algorithm gives a way to estimate global distance (across
many radio ranges) from local distance.

1 Initialize the source S at 0 and all other nodes at ∞.

2 Continually update the gradient value of all nodes N /∈ S based on
their neighbors in order to keep the triangle inequality maintained:

Gradient(N) = min
N ′ near N

(
Gradient(N ′) + d(N,N ′)

)
.

Essentially, this gives the length of the shortest path from N to the source
in a graph with edges connecting nearby nodes.
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Gradients

The Problem

Even with error-free processing and error-free local range-finding, the
gradient algorithm is not error-free: trails are jagged.

Figure: Gradient trails back to a source.
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Gradients

This jaggedness introduces both systematic and statistical error into
the gradient algorithm.

I studied one particular kind of systematic error, the fact that the
gradient algorithm more accurately measures αd(N,S) than d(N,S)
itself (for some constant α & 1).

That is, there is an underlying jaggedness that asymptotically causes
gradient values to be scaled upwards by a constant factor α.
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Figure: d(N,S) vs. [GradientS(N)− d(N,S)] (so the red line has slope α− 1)
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Gradients

There are different ways of looking at this phenomena:

It is unfortunate error which we would like to avoid. We need to know
how high node density (Nloc) has to be to put α close enough to 1 for
our purposes, whatever they may be.
More reasonably: It is a feature of how the gradient algorithm works
which we would like to correct for. We need to know what α is in
terms of Nloc.

Either way requires knowing the relationship between Nloc and α.

I first investigated this question through direct experimentation.
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Gradients Experiments

Basic Setup

Fill a rectangle randomly with nodes.

Set a thin strip along the left edge to be the source.

Run a gradient.

The output of a run will be a set of pairs (d(N,S),GradientS(N)) =
(actual distance, calculated distance). We perform a linear regression to
determine the value of α for this particular run. After many runs, with
varying Nloc, we will have a large set of (Nloc, α)s to analyze.
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Figure: Nloc vs. α (linear and log-log).
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Gradients Experiments

Initial Results

When I gave my first presentation on my research, things seemed to be
pointing nicely to a α ∝ n −2

loc relationship. The two experiments

represented below gave fits α = 0.693n −2.212
loc and α = 0.648n −2.045

loc ,
respectively.

Figure: Old-school data.
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Gradients Experiments

Condor

To continue exploring the parameter space effectively, I developed a
system to run Proto simulations on CSAIL’s Condor-based computing
cluster. This required:

Stripping Proto of its graphics code, so it can compile and run on the
cluster.

Figuring out how to make Condor play nice with output of dump files.

Making scripts to generate large “submit” files for Condor.
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Gradients Experiments

Newer Results

With the computing cluster, I could run Proto thousands and thousands of
times with thousands of nodes per run. The results threw doubt on the
simplicity of a -2 exponent:

Each point is a run:
they are partitioned
into four experiments
(red, blue, green, and
purple). The dark
black line is the fit,
α = 22.91 · n −2.608

loc .
The pale line is the fit
from the old set of
experiments.
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Gradients Theory

I took a break from running experiments and analyzing data to see if I
could derive an expression for α purely from theory.
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Gradients Theory

Theoretical Model

Consider a node N at (0, 0), with the gradient source infinitely far to
the right (positive x direction).

If N uses some neighboring node N1 located at (x, y) in its gradient
path to the source, it will move us x closer to the source, while
increasing the gradient value by

√
x2 + y2.

If this pattern continues, we will have α =
√

x2+y2

x =
√

1 +
( y

x

)2
.

Assuming N1 is distributed uniformly in the half-circle to N ’s right, a
simple geometric argument yields the cumulative distribution
F (A) = P (α < A) = 2

π arctan
√

A2 − 1. Taking the derivative of this
yields the probability density function f(α) = 2

π
1

α
√

α2−1
.

Josh Horowitz (MIT CSAIL) Gradient Error and Origami November 2, 2007 12 / 18



Gradients Theory

Now suppose N has exactly Nloc/2 = n neighbors to its right.

Each gives rise to an α with an identical distribution to that just
derived (That is, we suppose that we have Nloc/2 independent and
identically distributed random variables). To calculate the distribution
of their minimum, we use the order-statistic formula:

fmin(α) = n(1− F (α))n−1f(α) = n

(
2
π

)n (arccot α)n−1

α
√

α2 − 1
.
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Figure: Plots of fmin(α) for n = 1, 2, 3, 4, 5 (higher n =⇒ lower fmin as
α→∞).
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Gradients Theory

The expected values of these distributions are

E(αmin) = n

(
2
π

)n ∫ π/2

0
βn−1 csc β dβ.

Mathematica can’t touch these, but we can analyze them numerically.

50 100 150 200
Nloc

0.002

0.004

0.006

0.008

0.010

0.012

Α - 1

2 5 10 20 50 100 200
Nloc

0.001

0.01

0.1

1

Α - 1

Figure: nloc vs. α (linear and log-log).

The fit line plotted in the second graph is α = 6.476n −1.922
loc .
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Gradients Theory

Theory vs. Experiment

Predicting an exponent of -2 used to sound good, but more thorough
experimentation seems to suggest that it is innacurate.
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Figure: nloc vs. α (red line is the prediction from theory).
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Gradients Theory

Theoretical Model

Where does this discrepancy come from?

Assumptions

1 The source is very far away.

2 There is no variation in the number of neighbors.

3 The distribution of neighbors of any two nodes is independent (even
for nodes with overlapping neighborhoods).

None of these holds exactly during the execution of a gradient. It is
unknown whether their failures invalidate the results completely, introduce
additional phenomena to augment the results with, or are completely
negligible.
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Origami

Origami with Proto

In her PhD thesis, Radhika Nagpal describes a foldable sheet of cells
which, purely through local interaction and actuation, can attain a
shape determined by a global specification.

My other goal for the summer was to implement this in Proto. This
consisted of several tasks:

1 Implement a folding mechanism in the Proto simulator and add
language hooks to access the new features (actuators and sensors).

2 Figure out how to determine creases and sequence folds in Proto code.
3 Write a program to transform a specification written in Nagpal’s

high-level Origami Shape Language into a Proto program which folds
the material as specified.

I finished the first two of these to some degree.

Unfortunately, I can’t get it to run right now. :-(
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Conclusion

Conclusion

I hope that my work has been of value (perhaps I should finish it off
and write it up to make sure. . . ).

Especially looking back, it is clear that there are many interesting
questions left to explore.

This summer was one of the best in my life. Thanks to everyone I
worked with for their help, encouragement, and patience.
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